Our research focuses on the development of novel analytical approaches based on multidimensional luminescence spectroscopy. We take advantage of fluorescence and phosphorescence phenomena to directly determine target compounds in complex samples, to study mechanisms of interaction between chemical species in the liquid phase, and to elucidate solid-liquid interfacial phenomena. Our efforts directly impact areas of chemical sensing, environmental chemistry, liquid chromatography and capillary electrophoresis, and biological, forensic and pharmaceutical analysis. Current efforts are divided in four projects. First, we are developing new experimental methodologies and instruments for absorption, excitation, and multidimensional luminescence analysis at liquid nitrogen (77°K) and liquid helium (4.2° K) temperatures.

This approach is based on the use of cryogenic fiber optic probes, making it possible to perform low-temperature measurements in a matter of seconds. We have developed the only existing method that provides unambiguous determination of dibenzo[a, l]pyrene in contaminated samples. This compound is the most carcinogenic polycyclic aromatic hydrocarbon known. Our second project deals with new strategies for targeting specific proteins in complex physiological fluids. Protein recognition is achieved via luminescence probes consisting of lanthanide ions incorporated into polymerized liposomes. The two remaining projects target specific needs in forensic science and nanotechnology. The forensic science project investigates ways to identify textile fibers encountered as physical evidence in criminal investigations. The nanotechnology project focuses on the development of new separation methodology with potential impact on biotechnical, biochemical, and biological research.


  1. Rocha, B. R. Brandao da Costa, N. C. Perez de Albuquerque, A. R. Moraes de Oliverira, J. M. O. souza, M. Al-Tameemi, A. D. Campiglia, F. Barbosa Jr.*, 2016. A fast method for bisphenol A and six analogues (S, F, Z, P, AF, AP) determination in urine samples based on dispersive liquid-liquid microextraction and liquid chromatography-tandem mass spectrometry. Talanta, 154, 511 – 519. DOI: http://dx.doi.org/10.1016/j.talanta.2016.03.098.
  2. C. Maione, E. S. de Paula, M. Gallimberti, B. L. Batista, A. D. Campiglia, F. Barbosa Jr., R. M. Barbosa*, 2016. Comparative study of data mining techniques for the authentication of organic grape juice based on ICP-MS analysis. Expert Systems with Applications, 49, 60–73. DOI: 10.1016/j.eswa.2015.11.024.
  3.  A. M. de la Pena, N. Mujumdar, E. C. Heider, H. C. Goicoechea, D. M. de la Pena, A. D. Campiglia*, 2016. Nondestructive Total Excitation-Emission Fluorescence Microscopy Combined with Multi-Way Chemometric Analysis for Visually Indistinguishable Single Fiber Discrimination. Analytical Chemistry, 88, 2967-2975. DOI: 10.1021/acs.analchem.6b00264.
  4. R. M. Barbosa, E. S. de Paula, A. C. Paulelli, A. F. T. Moore, J. O. de Souza, B. L. Batista, A. D. Campiglia, F. Barbosa Jr.*, 2016. Recognition of organic rice samples based on trace elements and support vector machines. Journal of Food Composition and Analysis, 45, 95-100. DOI: 10.1016/j.jfca.2015.09.010.
  5. N. Mujumdar, E. C. Heider, A. D. Campiglia*, 2015. Enhancing Textile Fiber Identification with Detergent Fluorescence. Applied Spectroscopy, 69[12], 1390 – 1396. DOI: 10.1366/15-07992.
  6. B. A. Rocha, L. F. Azevedo, M. Gallimberti, A. D. Campiglia, F. Barbosa Jr*, 2015. High levels of Bisphenol A and Bisphenol S in Brazilian thermal paper receipts and estimation of daily exposure. Accepted for publication in Journal of Toxicology and Environmental Health-Part A-Current Issues, 78, 1181-1188. DOI: 10.1080/15287394.2015.1083519.
  7.  A. F. T. Moore, H. C. Goicoechea, F. Barbosa Jr., A. D. Campiglia*, 2015. Parallel Factor Analysis of 4.2K Excitation-Emission Matrices for the Direct Determination of Dibenzopyrene Isomers in Coal-Tar Samples with a Cryogenic Fiber Optic Probe Coupled to a Commercial Spectrofluorimeter. Analytical Chemistry, 87, 5232 – 5239. DOI: 10.1021/acs.analchem.5b00147.
  8. R. M. Barbosa, B. L. Batista, C. V. Bariao, R. M. Varrique, V. A. Coelho, A. D. Campiglia, F. Barbosa Jr.*, 2015. A simple and practical control of the authenticity of organic sugarcane samples based on the use of machine-learning algorithms and trace elements determination by inductively coupled plasma mass spectrometry. Food Chemistry, 184, 154-159. DOI:10.1016/j.foodchem.2015.02.146.